Hi Fi . Round . Titanium 4Ω

- Optimized pure titanium dome profile
- Compact design for small high-end systems
- Smooth response face plate profile
- Ultra light copper clad aluminium wire
- High energy neodymium magnet (20 times ceramic magnet)
- Ferrofluid cooled voice coil (new generation: 250 cps)
- Inherently shielded magnet system for audio/video application
- Soft polymer suspension

Response Curve

![Response Curve Graph](image)

Impedance Curve

![Impedance Curve Graph](image)

Specifications

<table>
<thead>
<tr>
<th>Technical characteristics</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY APPLICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Impedance</td>
<td>Z</td>
<td>4</td>
<td>Ω</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>Fs</td>
<td>1622</td>
<td>Hz</td>
</tr>
<tr>
<td>Nominal Power Handling</td>
<td>P</td>
<td>40</td>
<td>W</td>
</tr>
<tr>
<td>Sensitivity (2,83 V - 1m)</td>
<td>E</td>
<td>93</td>
<td>dB</td>
</tr>
</tbody>
</table>

Voice Coil

- Voice Coil Diameter: 20 mm
- Minimum Impedance: 3.5 Ω
- DC Resistance: 3.1 Ω
- Voice Coil Inductance: 0.01 mH
- Voice Coil Length: 1.7 mm
- Former: Aluminum
- Number of Layers: 2
- Wire type: round
- Wire material: Aluminum

Magnet

- Magnet Dimensions: φ x h: 20 x 0.4 mm
- Magnet Weight: 8.9 g
- Flux Density: B: 1 T
- Force Factor: BL: NA
- Height of Magnetic Gap: He: 0.2 mm
- Stray Flux: Fmag: - Am²
- Linear Excursion: Xmax: ±0.15 mm

PARAMETERS

- Suspension Compliance: Cms: - µm/N
- Mechanical O Factor: Dms: 2.31
- Electrical O Factor: Qes: 3.53
- Total Q Factor: Otls: 1.4
- Mechanical Resistance: Rms: - kg/s
- Moving Mass: Mm: - g
- Effective Piston Area: S: 4.91 cm²
- Volume Equivalent of Air at Cas: Vars: - liters
- Mass of Speaker: M: 50 g

Suggested Applications

<table>
<thead>
<tr>
<th>Crossover Frequency</th>
<th>Slope</th>
<th>Inductance</th>
<th>Capacitor</th>
<th>Power Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>dB/Oct.</td>
<td>mH</td>
<td>mF</td>
<td>W</td>
</tr>
<tr>
<td>5500</td>
<td>6</td>
<td>-</td>
<td>8.2</td>
<td>40</td>
</tr>
<tr>
<td>2600</td>
<td>12</td>
<td>0.3</td>
<td>12</td>
<td>40</td>
</tr>
</tbody>
</table>