Hi Fi. Round. Soft polymer 4 Ω

- Optimized advanced polymer dome profile
- Compact design for small high-end systems
- Smooth response face plate profile
- Ultra light copper clad aluminium wire
- High energy neodymium magnet (20 times ceramic magnet)
- Ferrofluid cooled voice coil (new generation: 250 cps)
- Inherently shielded magnet system for audio/video application

Response Curve

<table>
<thead>
<tr>
<th>Sensitivity (Mag - dB SPL/watt @ 2.83 V - 1 meter)</th>
<th>0.10 oct (eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>2000</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>105.0</td>
</tr>
</tbody>
</table>

Impedance Curve

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>10.0</td>
<td>9.0</td>
<td>8.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Voices coil

- Voice Coil Diameter \(\phi \) 20 mm
- Minimum Impedance \(Z_{\text{min}} \) 3.4 \(\Omega \)
- DC Resistance \(D_r \) 3.1 \(\Omega \)
- Voice Coil Inductance \(L_{\text{cm}} \) 0.01 \(\text{mH} \)
- Voice Coil Length \(h \) 1.7 mm
- Former Material Aluminum
- Number of Layers \(n \) 2
- Wire Type Round
- Wire Material Aluminum

Magnet

- Magnet Dimensions \(\phi \times h \) 20 x 0.4 mm
- Magnet Weight \(m \) 8.9 g
- Flux Density \(B \) 1 T
- Force Factor \(BL \) NA
- Height of Magnetic Gap \(H_e \) 0.2 mm
- Stray Flux \(F_{\text{mag}} \) Am
- Linear Excursion \(\dot{x}_{\text{max}} \) 0.15 mm

Parameters

- Suspension Compliance \(C_{\text{ms}} \) \(\mu \text{m/V} \)
- Mechanical Q Factor \(Q_{\text{ms}} \) 2.75
- Electrical Q Factor \(Q_e \) 3.23
- Total Q Factor \(Q_{\text{t}} \) 1.48
- Mechanical Resistance \(R_{\text{ms}} \) kg/s
- Moving Mass \(m_{\text{ms}} \) g
- Effective Piston Area \(S \) 4.91 cm²
- Volume Equivalent of Air at Cone \(V_{\text{eq}} \) m³
- Mass of Speaker \(M \) 50 g

Suggested Application

<table>
<thead>
<tr>
<th>Crossover Frequency</th>
<th>Slope</th>
<th>Inductance</th>
<th>Capacitor</th>
<th>Power Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>dB/Oct.</td>
<td>mH</td>
<td>mF</td>
<td>W</td>
</tr>
<tr>
<td>5500</td>
<td>6</td>
<td>-</td>
<td>8.2</td>
<td>40</td>
</tr>
<tr>
<td>2600</td>
<td>12</td>
<td>0.3</td>
<td>12</td>
<td>40</td>
</tr>
</tbody>
</table>