Electrical data
Nominal impedance $\text{Zn} = 8$ (ohm)
Minimum imp./at freq. $\text{Zmin} = 7.1/290$ (ohm/Hz)
Maximum impedance $\text{Zo} = 44.0$ (ohm)
Dc resistance $\text{Re} = 6.4$ (ohm)
Voice coil inductance $\text{Le} = 1.3$ (mH)

TS Parameters
Resonance Frequency $\text{fs} = 48.1$ (Hz)
Mechanical Q factor $\text{Qms} = 2.67$
Electrical Q factor $\text{Qes} = 0.45$
Total Q factor $\text{Qts} = 0.39$
Force factor $\text{Bl} = 8.4$ (Tm)
Mechanical resistance $\text{Rms} = 1.88$ (Kg/s)
Moving mass $\text{Mms} = 16.6$ (g)
Suspens. compliance $\text{Cms} = 0.66$ (mm/N)
Effective cone diam. $\text{D} = 13.3$ (cm)
Effective piston area $\text{Sd} = 139$ (cm2)
Equivalent volume $\text{Vas} = 17.6$ (ltrs)
SPL 2.83V/1m at fmin 88.6 (dB)

Voice coil and magnet parameters
Voice coil diameter 33.0 (mm)
Voice coil length 17.0 (mm)
Voice coil layers 2
Height of the gap 6.0 (mm)
Linear excursion +/- 5.5 (mm)
Max mech. excursion +/- - (mm)
Total useful flux 1.1 (mWb)
Diameter of magnet 102 (mm)
Height of magnet 20 (mm)
Weight of magnet 0.68 (kg)

Factors
Ratio $\text{fs/\text{Qts}} = 124$
Ratio $\text{Bl/\sqrt{\text{Re}}} = 3.3$

Special remarks
-

Power handling
100h RMS noise test (IEC) - (W)
Longterm Max System Power (IEC) - (W)
IEC268-5 noise signal is used for the powertest.

Remarks on powertest
-