Electrical data
- Nominal impedance: $Z_n = 8 \text{ (ohm)}$
- Minimum imp./at freq.: $Z_{\text{min}} = 6.7/274 \text{ (ohm/Hz)}$
- Maximum impedance: $Z_o = 38.1 \text{ (ohm)}$
- Dc resistance: $R_e = 5.8 \text{ (ohm)}$
- Voice coil inductance: $L_e = 1.3 \text{ (mH)}$

TS Parameters
- Resonance Frequency: $f_s = 52.3 \text{ (Hz)}$
- Mechanical Q factor: $Q_{\text{ms}} = 2.79$
- Electrical Q factor: $Q_{\text{es}} = 0.50$
- Total Q factor: $Q_{\text{ts}} = 0.43$
- Force factor: $B_l = 8.2 \text{ (Tm)}$
- Mechanical resistance: $R_{\text{ms}} = 2.09 \text{ (Kg/s)}$
- Moving mass: $M_{\text{ms}} = 17.7 \text{ (g)}$
- Suspens. compliance: $C_{\text{ms}} = 0.52 \text{ (mm/N)}$
- Effective cone diam.: $D = 13.1 \text{ (cm)}$
- Effective piston area: $S_d = 134 \text{ (cm}^2)$
- Equivalent volume: $V_{\text{es}} = 13.0 \text{ (ltrs)}$
- SPL: 2.83V/1m at fmin: 87.5 (dB)

Voice coil and magnet parameters
- Voice coil diameter: 33.0 (mm)
- Voice coil length: 17.0 (mm)
- Voice coil layers: 2
- Height of the gap: 6.0 (mm)
- Linear excursion $\pm /-$: 5.5 (mm)
- Total useful flux: 1.1 (mWb)
- Diameter of magnet: 102 (mm)
- Height of magnet: 20 (mm)
- Weight of magnet: 0.68 (kg)

Power handling
- 100h RMS noise test (IEC) - (W)
- Longterm Max System Power (IEC) - (W)
- IEC268-5 noise signal is used for the powertest.

Special remarks

Factors
- Ratio f_s/Q_{ts}: 122
- Ratio $B_l/\sqrt{R_e}$: 3.4

Remarks on powertest
-

Graph
- **SPL (dB)** vs **Frequency [Hz]**
- Impedance
- On-axis
- 30 degrees
- 60 degrees
