High quality 6½" woofer with Peerless' "Sandwich" cone, a 1.25" voice coil, and a heavy magnet.

The data on this CSC woofer makes it suitable for use in reflex boxes of 8-50 ltrs.

As this 6½" woofer gives well-controlled deep bass in larger boxes it is recommended as subwoofer. Further, it is suitable for use in small boxes in satellite systems or as midrange in larger systems.

Thiele-Small Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Free Air</th>
<th>Common</th>
<th>Baffled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal impedance (Ω)</td>
<td>Zn (Ω)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Minimum impedance freq (Hz)</td>
<td>Zmin (Ω/Hz)</td>
<td>6.6/121</td>
<td>6.6/121</td>
</tr>
<tr>
<td>Maximum impedance (Ω)</td>
<td>Z0 (Ω)</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>DC resistance (Ω)</td>
<td>Re (Ω)</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Voice coil inductance (mH)</td>
<td>Le (mH)</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Capacitor in series with 8Ω</td>
<td>Cc (µF)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>(for impedance compensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance Frequency (Hz)</td>
<td>Is (Hz)</td>
<td>38.5</td>
<td>37.2</td>
</tr>
<tr>
<td>Mechanical Q factor (Qms)</td>
<td>Qms</td>
<td>2.38</td>
<td>2.36</td>
</tr>
<tr>
<td>Electrical Q factor (Qes)</td>
<td>Qes</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>Total Q factor (Qtot)</td>
<td>Qtot</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>F (Ratio Is/Izo)</td>
<td>F</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Mechanical resistance (Kg)</td>
<td>Rms (Kg)</td>
<td>1.79</td>
<td>18.1</td>
</tr>
<tr>
<td>Moving mass (g)</td>
<td>Mms (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension compliance (mm^2/N)</td>
<td>Cms (mm^2/N)</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Effective cone diameter (mm)</td>
<td>D (mm)</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Effective piston area (mm^2)</td>
<td>Sd (mm^2)</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Equivalent volume (L)</td>
<td>Veq (L)</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>Force factor (N/m)</td>
<td>Bi (N/m)</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Reference voltage sensitivity (dB)</td>
<td>Re 2.83V in st 211 Hz (Calculated)</td>
<td>87.8</td>
<td></td>
</tr>
</tbody>
</table>

Magnet and Voice Coil Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice coil diameter (mm)</td>
<td>33</td>
</tr>
<tr>
<td>Voice coil length (mm)</td>
<td>17</td>
</tr>
<tr>
<td>Voice coil layers</td>
<td>2</td>
</tr>
<tr>
<td>Flux density in gap (Wb/m^2)</td>
<td>1.06</td>
</tr>
<tr>
<td>Total useful flux (Wb)</td>
<td>0.94</td>
</tr>
<tr>
<td>Height of the gap (mm)</td>
<td>6</td>
</tr>
<tr>
<td>Diameter of magnet (mm)</td>
<td>102</td>
</tr>
<tr>
<td>Height of magnet (mm)</td>
<td>16</td>
</tr>
<tr>
<td>Weight of magnet (Kg)</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Max Linear SPL

![Graph showing Maximum Linear SPL](image_url)