The goal for this tweeter series was to create a transducer that has a frequency response that is flat to above 20K, and where the distortion is far lower than normal and more friendly to the ear. The tweeters represent a unique approach to tweeter design that has resulted in unrivaled performance, as well as in several patents (dual concentric diaphragm, wave-guide center plug).

Driver Highlights: Dual concentric diaphragm (Patent), Wave-guide center plug (Patent), copper-clad aluwire

Electrical Data
- **Nominal impedance**: $4 \, \text{ohm}$
- **Minimum impedance**: $- \, \text{ohm}$
- **Maximum impedance**: $19 \, \text{ohm}$
- **DC resistance**: $2.9 \, \text{ohm}$
- **Voice coil inductance**: $-- \, \text{mH}$

T-S Parameters
- **Resonance Frequency**: $530 \, \text{Hz}$
- **Mechanical Q factor**: --
- **Electrical Q factor**: --
- **Total Q factor**: --
- **Force factor**: $2.5 \, \text{Tm}$
- **Mechanical resistance**: $0.38 \, \text{Kg/s}$
- **Moving mass**: $0.3 \, \text{g}$
- **Suspension compliance**: $-- \, \text{mm/N}$
- **Effective cone diameter**: $5.4 \, \text{cm}$
- **Effective piston area**: $-- \, \text{cm}^2$
- **Equivalent volume**: $91.1 \, \text{dB}$
- **Sensitivity**: $91.1 \, \text{dB}$

Power handling
- **Long-term Max System Power (IEC)**: -- $\, \text{W}$
- **Short Term Max power**: -- $\, \text{W}$

Voice Coil and Magnet Parameters
- **Voice coil diameter**: $26 \, \text{mm}$
- **Voice coil height**: $2.2 \, \text{mm}$
- **Voice coil layers**: --
- **Height of the gap**: $2.5 \, \text{mm}$
- **Flux density of gap**: -- $\, \text{mWb}$
- **Total useful flux**: -- $\, \text{mWb}$
- **Diameter of magnet**: -- $\, \text{mm}$
- **Height of magnet**: -- $\, \text{mm}$
- **Weight of magnet**: -- $\, \text{Kg}$
Frequency:

[SPL dB graph with frequency on the x-axis and SPL on the y-axis, showing curves for different resistances (32 Ω, 16 Ω, 8 Ω, 4 Ω).]

Mechanical Dimensions:

[Diagram with dimensions labeled: 40, 5, 60.1, 92, 5.2, 0.154, and notes: XT25TG30-04.]