SPECIFICATIONS

SW215WA01 8½" paper cone subwoofer, 4 ohm

8½" High Performance Steel Frame Subwoofer Unit. Suitable for dedicated subwoofer applications and as low frequency transducers in 2½-, 3- and multi-way speaker systems.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- · Large linear stroke, ensuring low distortion at high output levels
- Rigid air-dried paper cone to ensure piston motion even at high levels for reduced distortion
- Rigid steel chassis with extensive venting for lower air flow speed reducing audible distortion
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- · Large motor structure for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- · Black plated motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection
- Delivered with foam gasket attached for hassle-free mounting and secure cabinet sealing

NOMINAL SPECIFICATIONS

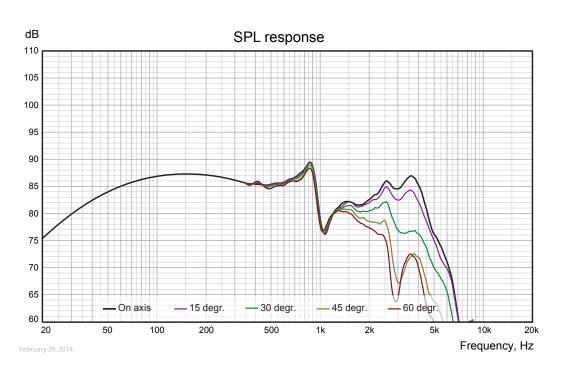
Notes	Parameter	Before	After	Unit
		burn-in	burn-in	
	Nominal size	8½		[inch.]
	Nominal impedance	4		[ohm]
	Recommended max. upper frequency limit	500		[Hz]
1, 3	Sensitivity, 2.83V/1m (calculated from T/S parameters)	89		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering	1,500		[W]
2	Power handling, long term, IEC 268-5, no additional filtering	400		[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	150		[W]
	Effective radiating area, Sd	206		[cm²]
3, 6	Resonance frequency (free air, no baffle), F _S	32		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	53		[g]
3	Force factor, Bxl	8.4		[N/A]
3, 6	Suspension compliance, Cms	0.46		[mm/N]
3, 6	Equivalent air volume, Vas	27.7		[lit.]
3, 6	Mechanical resistance, R _{ms}	0.89		[Ns/m]
3, 6	Mechanical Q, Q _{ms}	12		[-]
3, 6	Electrical Q, Qes	0.49		[-]
3, 6	Total Q, Qts	0.47		[-]
4	Voice coil resistance, RDC	3.2		[ohm]
5	Voice coil inductance, Le (measured at 1 kHz)	1.2 39 25 5 ±10		[mH]
	Voice coil inside diameter			[mm]
	Voice coil winding height			[mm]
	Air gap height			[mm]
	Theoretical linear motor stroke, Xmax			[mm]
	Magnet weight			[g]
	Total unit net weight excl. packaging			[kg]
3, 5	K _{rm}	7.0		[mohm]
3, 5	Erm	0.68		[-]
3, 5	K _{xm}	6.9		[mH]
3, 5	E _{xm}	0.78		[-]

Note 1 Measured in infinite baffle.

Note 2 Tested in free air (no cabinet).

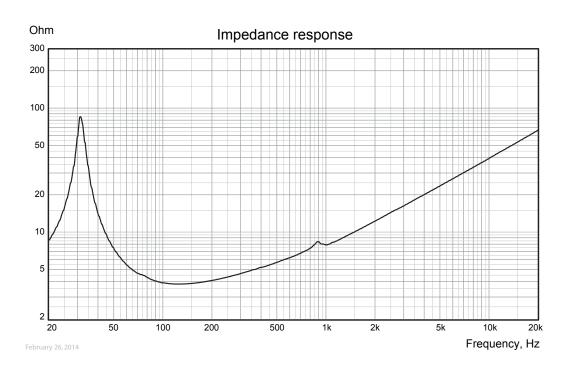
Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 25 deg. C


Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linears.com), involving parameters K_{TTI}, E_{TTI}, K_{XTI}, and E_{XTI}. This more accurate transducer model is described in a technical paper here at our web site.

Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10 V_{RMS}. The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright © 2014 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit www.Wavecor.com

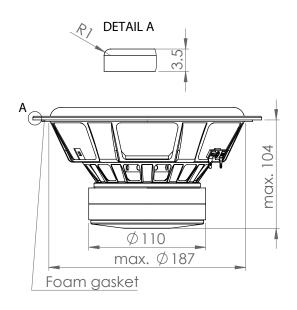


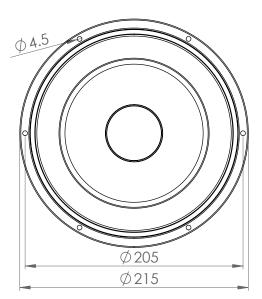
SW215WA01 8½" paper cone subwoofer, 4 ohm

Measuring conditions, SPL
Driver mounting: Flush in infinite
baffle, back side open (no cabinet)
Microphone distance: 1.0 m
Input signal: 2.83 VRMS stepped sine wave
Smoothing: 1/6 oct.

Measuring conditions, impedance
Driver mounting: Free air, no baffle,
back side open (no cabinet)
Input signal: Stepped sine wave, semicurrent-drive, nominal current 2 mA
Smoothing: None

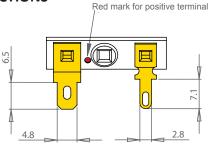
Specifications are subject to change without any further notice. Copyright © 2014 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd.


For more information please visit www.Wavecor.com



SW215WA01 8½" paper cone subwoofer, 4 ohm

OUTLINE DRAWING (nominal dimensions)


Dimensions in mm

March 5, 2014

CONNECTIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. SW215WA01-01 4 ohm version, individual packaging (one piece per box)

Latest update: Nov. 19, 2015