The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesses - it gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:

- Wide Operating Frequency Range
- Coated NRSC Fibre Glass Cone (patent)
- Die cast Alu Chassis vented below spider
- Suitable for 2-way or 3-way (as midrange)
- Low Damping SBR Rubber Surround

T-S Parameters

- Resonance frequency [fs] 52 Hz
- Mechanical Q factor [Qms] 3.42
- Electrical Q factor [Qes] 0.35
- Total Q factor [Qts] 0.32
- Force factor [Bl] 5.4 Tm
- Mechanical resistance [Rms] 0.54 kg/s
- Moving mass [Mms] 5.6 g
- Suspension compliance [Cms] 1.67 mm/N
- Effective diaph. diameter [D] 86 mm
- Effective piston area [Sd] 59 cm²
- Equivalent volume [Vas] 8.2 l
- Sensitivity (2.83V/1m) 85.8 dB
- Ratio Bl/√Re 2.28 N/√W
- Ratio fs/√Qts 163 Hz

Electrical Data

- Nominal impedance [Zn] 8 Ω
- Minimum impedance [Zmin] 6.6 Ω
- Maximum impedance [Zo] 48.2 Ω
- DC resistance [Re] 5.7 Ω
- Voice coil inductance [Le] 0.6 mH

Power Handling

- 100h RMS noise test (IEC 17.1) 40 W
- Long-term max power (IEC 17.3) 70 W

Voice Coil and Magnet Data

- Voice coil diameter 25 mm
- Voice coil height 10 mm
- Voice coil layers 2
- Height of gap 4 mm
- Linear excursion ± 3 mm
- Max mech. excursion ± 9 mm
- Unit weight 1 kg

Notes:

IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) = 5.79 Ω
- Free inductance \([L_{eb}]\) = 0.0534 mH
- Bound inductance \([L_e]\) = 0.852 mH
- Semi-inductance \([L_{es}]\) = 0.0893 SH
- Shunt resistance \([R_{ss}]\) = 19548 Ω

Mechanical Data:
- Force Factor \([B_l]\) = 5.14 Tm
- Moving mass \([M_{ms}]\) = 5.70 g
- Compliance \([C_{ms}]\) = 1.41 mm/N
- Mechanical resistance \([R_{ms}]\) = 0.120 kg/s
- Admittance \([A_{ms}]\) = 0.324 mm/N