MIDRANGE 15M/4624G00

The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesse - it gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:
- High Output 92.5dBA @ 2.83V
- Coated NRSC Fibre Glass Cone
- Die cast Alu Chassis vented below spider
- Phase Plug for Improved Phase Linearity
- Very Low Damping Foam Surround (Coated)
- Magnet System w. Alu Ring

T-S Parameters
- Resonance frequency \([fs]\) 100 Hz
- Mechanical Q factor \([Qms]\) 5.62
- Electrical Q factor \([Qes]\) 0.47
- Total Q factor \([Qts]\) 0.43
- Force factor \([Bl]\) 5.3 Tm
- Mechanical resistance \([Rms]\) 0.69 kg/s
- Moving mass \([Mms]\) 6.2 g
- Suspension compliance \([Cms]\) 0.41 mm/N
- Effective diaph. diameter \([D]\) 101 mm
- Effective piston area \([Sd]\) 80 cm²
- Equivalent volume \([Vas]\) 3.7 l
- Sensitivity (2.83V/1m) 92.4 dB
- Ratio Bl/\(\sqrt{Re}\) 2.96 N/\(\sqrt{W}\)
- Ratio fs/\(Qts\) 231 Hz

Electrical Data
- Nominal impedance \([Zn]\) 4 Ω
- Minimum impedance \([Zmin]\) 4.1 Ω
- Maximum impedance \([Zo]\) 41.5 Ω
- DC resistance \([Re]\) 3.2 Ω
- Voice coil inductance \([Le]\) 0.23 mH

Power Handling
- 100h RMS noise test (IEC 17.1)* 75 W
- Long-term max power (IEC 17.3)* - W
*Filter: 2. order HP Butterworth, 200 Hz

Voice Coil and Magnet Data
- Voice coil diameter 25 mm
- Voice coil height 8 mm
- Voice coil layers 2
- Height of gap 5 mm
- Linear excursion ± 1.5 mm
- Max mech. excursion ± 8 mm
- Unit weight 1 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) - \(\Omega\)
- Free inductance \([L_{eb}]\) - \(mH\)
- Bound inductance \([L_e]\) - \(mH\)
- Semi-inductance \([K_e]\) - \(SH\)
- Shunt resistance \([R_{ss}]\) - \(\Omega\)

Mechanical Data
- Force Factor \([B_l]\) - \(Tm\)
- Moving mass \([M_{ms}]\) - \(g\)
- Compliance \([C_{ms}]\) - \(mm/N\)
- Mechanical resistance \([R_{ms}]\) - \(kg/s\)
- Admittance \([A_{ms}]\) - \(mm/N\)