The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesses - it gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:

- High Output 90dB @ 2.83V
- Magnet System w. Alu Ring
- Die cast Alu Chassis vented below spider
- Coated NRSC Fibre Glass Cone
- Low Damping SBR Rubber Surround

T-S Parameters

- Resonance frequency [fs] 43 Hz
- Mechanical Q factor [Qms] 3.69
- Electrical Q factor [Qes] 0.22
- Total Q factor [Qts] 0.21
- Force factor [Bl] 5.9 Tm
- Mechanical resistance [Rms] 0.70 kg/s
- Moving mass [Mms] 9.6 g
- Suspension compliance [Cms] 1.43 mm/N
- Effective diaph. diameter [D] 101 mm
- Effective piston area [Sd] 80 cm²
- Equivalent volume [Vas] 12.8 l
- Sensitivity (2.83V/1m) 89.7 dB
- Ratio Bl/vRe 3.41 N/vW
- Ratio fs/Qts 207 Hz

Electrical Data

- Nominal impedance [Zn] 4 Ω
- Minimum impedance [Zmin] 4.1 Ω
- Maximum impedance [Zo] 53.3 Ω
- DC resistance [Re] 3 Ω
- Voice coil inductance [Le] 0.5 mH

Power Handling

- 100h RMS noise test (IEC 17.1) 60 W
- Long-term max power (IEC 17.3) 120 W

Voice Coil and Magnet Data

- Voice coil diameter 32 mm
- Voice coil height 13.6 mm
- Voice coil layers 2
- Height of gap 5 mm
- Linear excursion ± 4.3 mm
- Max mech. excursion ± 8 mm
- Unit weight 1.2 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) = 3.35 \(\Omega\)
- Free inductance \([L_{eb}]\) = 0.0580 mH
- Bound inductance \([L_e]\) = 0.444 mH
- Semi-inductance \([K_e]\) = 0.0489 SH
- Shunt resistance \([R_{ss}]\) = 1813 \(\Omega\)

Mechanical Data
- Force Factor \([B_l]\) = 5.44 Tm
- Moving mass \([M_{ms}]\) = 10.4 g
- Compliance \([C_{ms}]\) = 1.23 mm/N
- Mechanical resistance \([R_{ms}]\) = 0.274 kg/s
- Admittance \([A_{ms}]\) = 0.206 mm/N