MIDWOOFER 15WU/4741T00

The Illuminator midranges and midwoofers are in every aspect unusual designs with the open construction, the extremely long linear excursion and patented under-hung SD-3 (Symmetrical Drive) neodymium motor system, which due to copper caps and its construction ensures very low distortion, adding the unique patented cones, low-loss linear suspension the result is: "The Very Best Money Can Buy"!

KEY FEATURES:
- Under-Hung Neodymium Motor Design
- Patented Sandwich Paper Cone
- Low-loss linear suspension
- Patented Symmetrical Drive (SD-3)
- Exceptionally Long Linear Excursion
- Patented Design

T-S Parameters
- Resonance frequency [fs]: 34 Hz
- Mechanical Q factor [Qms]: 3.47
- Electrical Q factor [Qes]: 0.25
- Total Q factor [Qts]: 0.23
- Force factor [Bl]: 6 Tm
- Mechanical resistance [Rms]: 0.80 kg/s
- Moving mass [Mms]: 13 g
- Suspension compliance [Cms]: 1.69 mm/N
- Effective diaph. diameter [D]: 108 mm
- Effective piston area [Sd]: 92 cm²
- Equivalent volume [Vas]: 20.0 l
- Sensitivity (2.83V/1m): 85.9 dB
- Ratio Bl/√Re: 3.35 N/√W
- Ratio fs/Qts: 146 Hz

Electrical Data
- Nominal impedance [Zn]: 4 Ω
- Minimum impedance [Zmin]: 4.6 Ω
- Maximum impedance [Zo]: 47.6 Ω
- DC resistance [Re]: 3.2 Ω
- Voice coil inductance [Le]: 0.5 mH

Power Handling
- 100h RMS noise test (IEC 17.1): 80 W
- Long-term max power (IEC 17.3): 150 W

Voice Coil and Magnet Data
- Voice coil diameter: 42 mm
- Voice coil height: 8 mm
- Voice coil layers: 4
- Height of gap: 20 mm
- Linear excursion: ± 9 mm
- Max mech. excursion: ± 13 mm
- Unit weight: 1.7 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance $[Re']$: 3.61 Ω
- Free inductance $[Leb]$: 0.0481 mH
- Bound inductance $[Le]$: 2.02 mH
- Semi-inductance $[Ke]$: 0.0669 SH
- Shunt resistance $[Rss]$: 4.30 Ω

Mechanical Data:
- Force Factor $[Bl]$: 5.44 Tm
- Moving mass $[Mms]$: 12.3 g
- Compliance $[Cms]$: 1.76 mm/N
- Mechanical resistance $[Rms]$: 0.218 kg/s
- Admittance $[Ams]$: 0.276 mm/N