The Revelator woofers and subwoofers features very rigid cones in paper or aluminium that operates as a piston over a wide frequency range, in combination with Scan-Speaks low-loss linear suspension and the patented Symmetrical Drive (SD-1) it results in very low distortion and a smooth and well behaved frequency response as well as perfect transient reproduction.

KEY FEATURES:
- Patented Symmetrical Drive Motor Design
- Low-Loss linear suspension
- Die cast Alu Chassis vented below spider
- Rigid Paper Cone
- Low Damping SBR Rubber Surround
- Ferrite Magnet System w. Rubber Boot

T-S Parameters
- Resonance frequency \([fs]\) = 21 Hz
- Mechanical Q factor \([Qms]\) = 5.10
- Electrical Q factor \([Qes]\) = 0.26
- Total Q factor \([Qts]\) = 0.25
- Force factor \([Bl]\) = 9.9 Tm
- Mechanical resistance \([Rms]\) = 0.80 kg/s
- Moving mass \([Mms]\) = 31 g
- Suspension compliance \([Cms]\) = 1.85 mm/N
- Effective diaph. diameter \([D]\) = 167 mm
- Effective piston area \([Sd]\) = 220 cm²
- Equivalent volume \([Vas]\) = 126 l
- Sensitivity (2.83V/1m) = 88 dB
- Ratio \(Bl/vRe\) = 3.98 N/V/W
- Ratio \(fs/Qts\) = 85 Hz

Electrical Data
- Nominal impedance \([Zn]\) = 8 Ω
- Minimum impedance \([Zmin]\) = 7.2 Ω
- Maximum impedance \([Zo]\) = 128 Ω
- DC resistance \([Re]\) = 6.2 Ω
- Voice coil inductance \([Le]\) = 0.35 mH

Power Handling
- 100h RMS noise test (IEC 17.1) = 170 W
- Long-term max power (IEC 17.3) = W

Voice Coil and Magnet Data
- Voice coil diameter = 50 mm
- Voice coil height = 24 mm
- Voice coil layers = 2
- Height of gap = 6 mm
- Linear excursion = ± 9 mm
- Max mech. excursion = ± 14 mm
- Unit weight = 3.6 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e'] \) - Ω
- Free inductance \([L_{eb}] \) - mH
- Bound inductance \([L_e] \) - mH
- Semi-inductance \([K_e] \) - SH
- Shunt resistance \([R_{ss}] \) - Ω

Mechanical data:
- Force factor \([B_l] \) - Tm
- Moving mass \([M_{ms}] \) - g
- Compliance \([C_{ms}] \) - mm/N
- Mechanical resistance \([R_{ms}] \) - kg/s
- Admittance \([A_{ms}] \) - mm/N