The Revelator woofers and subwoofers features very rigid cones in paper or aluminium that operates as a piston over a wide frequency range, in combination with Scan-Speaks linear suspension and the patented Symmetrical Drive (SD-1) it results in very low distortion and a smooth and well behaved frequency response as well as perfect transient reproduction.

KEY FEATURES:
- Patented Symmetrical Drive Motor Design
- Long Throw Surround
- Ferrite Magnet System w. Rubber Boot
- Black Anodized Rigid Alu Cone
- Die cast Alu Chassis vented below spider
- Gold Binding Post Terminals

T-S Parameters
- Resonance frequency [fs]: 21 Hz
- Mechanical Q factor [Qms]: 4.80
- Electrical Q factor [Qes]: 0.52
- Total Q factor [Qts]: 0.47
- Force factor [Bl]: 9.3 Tm
- Mechanical resistance [Rms]: 2.71 kg/s
- Moving mass [Mms]: 101 g
- Suspension compliance [Cms]: 0.60 mm/N
- Effective diaph. diameter [D]: 172 mm
- Effective piston area [Sd]: 232 cm²
- Equivalent volume [Vas]: 45.0 l
- Sensitivity (2.83V/1m): 82 dB
- Ratio Bl/√Re: 5.01 N/V/W
- Ratio fs/Qts: 44 Hz

Electrical Data
- Nominal impedance [Zn]: 4 Ω
- Minimum impedance [Zmin]: 4.6 Ω
- Maximum impedance [Zo]: 35.3 Ω
- DC resistance [Re]: 3.45 Ω
- Voice coil inductance [Le]: 0.45 mH

Power Handling
- 100h RMS noise test (IEC 17.1): 225 W
- Long-term max power (IEC 17.3): - W

Voice Coil and Magnet Data
- Voice coil diameter: 50 mm
- Voice coil height: 34 mm
- Voice coil layers: 2
- Height of gap: 8 mm
- Linear excursion: ± 13 mm
- Max mech. excursion: ± 20 mm
- Unit weight: 4.6 kg

Notes:
IEC specs, refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance $[R_e']$ - Ω
- Free inductance $[L_{eb}]$ - mH
- Bound inductance $[L_e]$ - mH
- Semi-inductance $[K_e]$ - SH
- Shunt resistance $[R_{ss}]$ - Ω

Mechanical Data:
- Force Factor $[B_l]$ - Tm
- Moving mass $[M_{ms}]$ - g
- Compliance $[C_{ms}]$ - mm/N
- Mechanical resistance $[R_{ms}]$ - kg/s
- Admittance $[A_{ms}]$ - mm/N