The Symmetric Drive (SD-1) concept with copper in the magnet system was invented by Scan-Speak. High-quality magnet system design has thus been a key feature of Scan-Speak design since the company’s inception. The Classic woofers are highly praised, and are used in some of the worlds most exceptional high-end Loudspeakers. Some feature Kevlar cones, others have the innovative Carbon fibre/Paper cones.

KEY FEATURES:

- Patented Symmetrical Drive Motor Design
- Low-Loss linear suspension
- Low Damping SBR Rubber Surround
- Low Resonance Freq. 20Hz
- Air Dried Paper/Carbon Fibre Cone
- 42mm Voice Coil

T-S Parameters

- Resonance frequency [fs] 20 Hz
- Mechanical Q factor [Qms] 5.40
- Electrical Q factor [Qes] 0.44
- Total Q factor [Qts] 0.41
- Force factor [Bl] 8.2 Tm
- Mechanical resistance [Rms] 1.00 kg/s
- Moving mass [Mms] 43 g
- Suspension compliance [Cms] 1.47 mm/N
- Effective diaph. diameter [D] 205 mm
- Effective piston area [Sd] 330 cm²
- Equivalent volume [Vas] 225 l
- Sensitivity (2.83V/1m) 88 dB
- Ratio Bl/√Re 3.50 N/√W
- Ratio fs/√Qts 49 Hz

Electrical Data

- Nominal impedance [Zn] 8 Ω
- Minimum impedance [Zmin] 6.2 Ω
- Maximum impedance [Zo] 73.0 Ω
- DC resistance [Re] 5.5 Ω
- Voice coil inductance [Le] 0.4 mH

Power Handling

- 100h RMS noise test (IEC 17.1) 100 W
- Long-term max power (IEC 17.3) - W

Voice Coil and Magnet Data

- Voice coil diameter 42 mm
- Voice coil height 19 mm
- Voice coil layers 2
- Height of gap 6 mm
- Linear excursion ± 6.5 mm
- Max mech. excursion ± 12 mm
- Unit weight 2.3 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance $[R_e']$ = 5.67 Ω
- Free inductance $[L_{eb}]$ = 0.173 mH
- Bound inductance $[L_e]$ = 1.55 mH
- Semi-inductance $[K_e]$ = 0.0306 SH
- Shunt resistance $[R_{ss}]$ = 2309 Ω

Mechanical Data:
- Force Factor $[B_l]$ = 7.22 Tm
- Moving mass $[M_{ms}]$ = 45.4 g
- Compliance $[C_{ms}]$ = 0.994 mm/N
- Mechanical resistance $[R_{ms}]$ = 0.060 kg/s
- Admittance $[A_{ms}]$ = 0.134 mm/N