The 32W/4878T01 is a powerful woofer designed by Scan-speak. Its large 3” voice coil and low resonance frequency is perfect to reproduce low to mid frequencies at high efficiency. It features a brand new type of paper-sandwich cone with a special foam filling technology (patented) that gives the cone very high stiffness and relative low weight. The motor system has heavy-duty copper sleeves for optimizing eddy currents effect and minimized self-induction.

KEY FEATURES:

- Paper sandwich cone with patented foam filling
- Patented Symmetrical Drive motor
- Spider with balanced woven in tinsel leads
- Lin. excursion (±7.0 mm) with high efficiency
- 3” Voice coil, Titanium former and paper reinforced
- Stiff and strong die cast aluminium chassis

T-S Parameters

- Resonance frequency [fs]: 23 Hz
- Mechanical Q factor [Qms]: 6.0
- Electrical Q factor [Qes]: 0.30
- Total Q factor [Qts]: 0.28
- Force factor [Bl]: 13 Tm
- Mechanical resistance [Rms]: 2.7 kg/s
- Moving mass [Mms]: 112 g
- Compliance [Cms]: 0.43 mm/N
- Effective diaph. diameter [D]: 260 mm
- Effective piston area [Sd]: 531 cm²
- Equivalent volume [Vas]: 170 l
- Sensitivity (2.83V/1m): 92 dB
- Ratio Bl/√Re: 7.4 N/√W
- Ratio fs/Qts: 82 Hz

Electrical Data

- Nominal impedance [Zn]: 4 Ω
- Minimum impedance [Zmin]: - Ω
- Maximum impedance [Zo]: - Ω
- DC resistance [Re]: 3.1 Ω
- Voice coil inductance [Le]: 0.3 mH

Power Handling

- 100h RMS noise test (IEC 17.1): 350 W
- Long-term max power (IEC 17.3): 700 W

Voice Coil & Magnet Data

- Voice coil diameter: 75 mm
- Voice coil height: 22 mm
- Voice coil layers: 2
- Height of gap: 8 mm
- Linear excursion: ± 7 mm
- Max mech. excursion: ± 28 mm

Unit weight

- 7.5 kg
Advanced Parameters (Preliminary)

Electrical data
- Resistance $[R_e']$ - Ω
- Free inductance $[L_{eb}]$ - mH
- Bound inductance $[L_e]$ - mH
- Semi-inductance $[K_e]$ - SH
- Shunt resistance $[R_{ss}]$ - Ω

Mechanical Data
- Force Factor $[B_l]$ - Tm
- Moving mass $[M_{ms}]$ - g
- Compliance $[C_{ms}]$ - mm/N
- Mechanical resistance $[R_{ms}]$ - kg/s
- Admittance $[A_{ms}]$ - mm/N