The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesses - gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:

- Powerful Neo Ring Motor, Symmetric Drive
- 1” Voice Coil, Ti Former, European Soft Parts
- Hard Paper Cone, Foam Surround, Long Excursion
- Large Pole Piece Vent, Low Distortion
- Wide Frequency Range
- Extended Copper Cap on Pole Piece

T-S Parameters

- Resonance frequency \([fs]\) 93 Hz
- Mechanical Q factor \([Qms]\) 5.17
- Electrical Q factor \([Qes]\) 0.69
- Total Q factor \([Qts]\) 0.61
- Force factor \([Bl]\) 3.07 Tm
- Mechanical resistance \([Rms]\) 0.21 kg/s
- Moving mass \([Mms]\) 1.86 g
- Compliance \([Cms]\) 1.58 mm/N
- Effective diaph. diameter \([D]\) 44 mm
- Effective piston area \([Sd]\) 15.2 cm²
- Equivalent volume \([Vas]\) 0.50 l
- Sensitivity (2.83V/1m) 80 dB
- Ratio Bl/√Re 1.27 N/√W
- Ratio fs/Qts 152.5 Hz

Electrical Data

- Nominal impedance \([Zn]\) 8 Ω
- Minimum impedance \([Zmin]\) 6.1 Ω
- Maximum impedance \([Zo]\) 43.1 Ω
- DC resistance \([Re]\) 6.0 Ω
- Voice coil inductance \([Le]\) 0.07 mH

Power Handling

- 100h RMS noise test (IEC 17.1) 10 W
- Long-term max power (IEC 17.3) 20 W

Voice Coil & Magnet Data

- Voice coil diameter 26 mm
- Voice coil height 6 mm
- Voice coil layers 2
- Height of gap 2 mm
- Linear excursion ± 2 mm
- Max mech. excursion ± 5 mm
- Unit weight 0.127 kg

Notes:

IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: March 31, 2016.
Advanced Parameters (Preliminary)

Electrical data
- Resistance $[R_e']$ - Ω
- Free inductance $[L_{eb}]$ - mH
- Bound inductance $[L_e]$ - mH
- Semi-inductance $[K_e]$ - SH
- Shunt resistance $[R_{ss}]$ - Ω

Mechanical Data
- Force Factor $[B_l]$ - Tm
- Moving mass $[M_{ms}]$ - g
- Compliance $[C_{ms}]$ - mm/N
- Mechanical resistance $[R_{ms}]$ - kg/s
- Admittance $[A_{ms}]$ - mm/N