The Revelator Tweeters large roll surround technology represents a breakthrough in overall performance, with outstanding off-axis response, high output capability and low resonance frequency. Additional enhancements have been made to reduce distortion and power compression, such as large neodymium magnet systems for high sensitivity, and a careful design to optimise airflow in the chambers.

KEY FEATURES:
- 1" Coated Textile Diaphragm
- Patented Symmetrical Drive (SD-2) motor
- Non Resonant Alu Rear Chamber
- Large Roll Surround f. Wide Dispersion
- Large Ring Neo Magnet f. High Output
- Silver Anodized Machined Alu Face Plate

T-S Parameters
- Resonance frequency [f_s]: 520 Hz
- Mechanical Q factor [Q_{ms}]: 3.50
- Electrical Q factor [Q_{es}]: 0.50
- Total Q factor [Q_{ts}]: 0.44
- Force factor [B_l]: 2.8 Tm
- Mechanical resistance [R_{ms}]: 0.37 kg/s

Electrical Data
- Nominal impedance [Z_n]: 4 Ω
- Minimum impedance [Z_{min}]: 3.7 Ω
- Maximum impedance [Z_o]: 24.0 Ω
- DC resistance [R_e]: 3 Ω
- Voice coil inductance [L_e]: 0.01 mH

Power Handling
- 100h RMS noise test (IEC 17.1)*: 90 W
- Long-term max power (IEC 17.3)*: 150 W
 *Filter: 2. order HP Butterworth, 2.5 kHz

Voice Coil and Magnet Data
- Voice coil diameter: 26 mm
- Voice coil height: 2.1 mm
- Voice coil layers: 2
- Height of gap: 2.5 mm
- Linear excursion: ± 0.2 mm
- Max mech. excursion: ± 1.6 mm
- Unit weight: 0.4 kg

Notes:
IEC specs, refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([\text{Re}']\) - Ω
- Free inductance \([\text{Leb}]\) - mH
- Bound inductance \([\text{Le}]\) - mH
- Semi-inductance \([\text{Ke}]\) - SH
- Shunt resistance \([\text{Rss}]\) - Ω

Mechanical Data:
- Force Factor \([\text{Bl}]\) - Tm
- Moving mass \([\text{Mms}]\) - g
- Compliance \([\text{Cms}]\) - mm/N
- Mechanical resistance \([\text{Rms}]\) - kg/s
- Admittance \([\text{Ams}]\) - mm/N