The Classic tweeters are among the many highly praised designs in Classic series. They have enjoyed success over 3 decades. And still among the best tweeters available. The D2905/9000 tweeter kick-started a new era with a line of very high quality 1” tweeters, today known as -9300, -9500, -9700 and -9800. Despite their many years on the marked still used in many top High-End speakers around the world.

KEY FEATURES:
- 1” Aluminium Dome Diaphragm
- Patented Symmetrical Drive (SD) motor
- Wave Guide
- Low Resonance Rear Chamber
- Black Painted Alu Face Plate

T-S Parameters
- Resonance frequency [fs] 500 Hz
- Mechanical Q factor [Qms] 3.09
- Electrical Q factor [Qes] 0.84
- Total Q factor [Qts] 0.66
- Force factor [Bl] 2.8 Tm
- Mechanical resistance [Rms] 0.61 kg/s
- Moving mass [Mms] 0.6 g
- Suspension compliance [Cms] 0.20 mm/N
- Effective diaph. diameter [D] 33 mm
- Effective piston area [Sd] 8.5 cm²
- Equivalent volume [Vas] 0.02 l
- Sensitivity (2.83V/1m) 88 dB
- Ratio Bl/vRe 1.50 N/V/W
- Ratio fs/Qts 756 Hz

Notes:
IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.

Electrical Data
- Nominal impedance [Zn] 4 Ω
- Minimum impedance [Zmin] 4.3 Ω
- Maximum impedance [Zo] 16.4 Ω
- DC resistance [Re] 3.5 Ω
- Voice coil inductance [Le] 0.01 mH

Power Handling
100h RMS noise test (IEC 17.1)* 160 W
Long-term max power (IEC 17.3)* - W
*Filter: 2. order HP Butterworth, 2.5 kHz

Voice Coil and Magnet Data
- Voice coil diameter 28 mm
- Voice coil height 2.5 mm
- Voice coil layers 2
- Height of gap 2.5 mm
- Linear excursion ± 0.1 mm
- Max mech. excursion ± 1.5 mm
- Unit weight 0.7 kg
Advanced Parameters (Preliminary)

Electrical data:
- Resistance [Re'] - Ω
- Free inductance [Leb] - mH
- Bound inductance [Le] - mH
- Semi-inductance [Ke] - SH
- Shunt resistance [Rss] - Ω

Mechanical Data
- Force Factor [Bl] - Tm
- Moving mass [Mms] - g
- Compliance [Cms] - mm/N
- Mechanical resistance [Rms] - kg/s
- Admittance [Ams] - mm/N