D2905/990000 - The original Revelator tweeter - is build on the heritage of our successful Classic tweeters, continuing with Symmetrical Drive (SD-2) motor design which includes copper caps, the non resonant chamber and the special treated textile 29mm dome and further optimized for the ultimate performance utilizing a large machined aluminium wave guide front.

KEY FEATURES:
- Excellent Sound Reproduction
- Patented Symmetrical Drive (SD-2) motor
- Large Wave Guide Front
- 1” Textile Dome Diaphragm
- Wide Surround Textile Diaphragm
- Black Anodized Machined Alu Face Plate

T-S Parameters
- Resonance frequency [fs] 500 Hz
- Mechanical Q factor [Qms] 4.83
- Electrical Q factor [Qes] 0.72
- Total Q factor [Qts] 0.63
- Force factor [Bl] 3.5 Tm
- Mechanical resistance [Rms] 0.29 kg/s
- Moving mass [Mms] 0.45 g
- Suspension compliance [Cms] 0.23 mm/N
- Effective diaph. diameter [D] 33 mm
- Effective piston area [Sd] 8.5 cm²
- Equivalent volume [Vas] 0.02 l
- Sensitivity (2.83V/1m) 91 dB
- Ratio Bl/√Re 1.61 N/VW
- Ratio fs/√Qts 795 Hz

Electrical Data
- Nominal impedance [Zn] 6 Ω
- Minimum impedance [Zmin] 5.6 Ω
- Maximum impedance [Zo] 36.1 Ω
- DC resistance [Re] 4.7 Ω
- Voice coil inductance [Le] 0.01 mH

Power Handling
- 100h RMS noise test (IEC 17.1)* 225 W
- Long-term max power (IEC 17.3)* - W
 *Filter: 2. order HP Butterworth, 2.8 kHz

Voice Coil and Magnet Data
- Voice coil diameter 28 mm
- Voice coil height 3.3 mm
- Voice coil layers 2
- Height of gap 2.5 mm
- Linear excursion ± 0.4 mm
- Max mech. excursion ± 1.5 mm
- Unit weight [kg]

Notes:
IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) \(- \Omega\)
- Free inductance \([L_{eb}]\) \(- \text{mH}\)
- Bound inductance \([L_e]\) \(- \text{mH}\)
- Semi-inductance \([K_e]\) \(- \text{SH}\)
- Shunt resistance \([R_{ss}]\) \(- \Omega\)

Mechanical Data:
- Force Factor \([B_l]\) \(- \text{Tm}\)
- Moving mass \([M_{ms}]\) \(- \text{g}\)
- Compliance \([C_{ms}]\) \(- \text{mm/N}\)
- Mechanical resistance \([R_{ms}]\) \(- \text{kg/s}\)
- Admittance \([A_{ms}]\) \(- \text{mm/N}\)