This 1” compact Illuminator beryllium tweeter is an example of a big sound in a small body. As beryllium is a material characterised by great stiffness, light weight and high damping, the beryllium diaphragm offers all the properties required to reproduce excellent sound. And indeed, the 1” tweeter sounds great. It has a very low distortion and a distinct clarity that brings out the best in all types of music.

KEY FEATURES:
- 1” Beryllium diaphragm (99% pure BE)
- Large non resonant aluminium enclosure
- Sound transparent protective grill
- Patented symmetrical drive (SD-2) motor
- Large roll surround for wide dispersion
- Applicable for HiFi and automotive

T-S Parameters
- Resonance frequency \([f_s]\) 450 Hz
- Mechanical Q factor \([Q_{ms}]\) 2.50
- Electrical Q factor \([Q_{es}]\) 0.97
- Total Q factor \([Q_{ts}]\) 0.70
- Force factor \([B_l]\) 1.7 Tm
- Mechanical resistance \([R_{ms}]\) 0.4 kg/s
- Moving mass \([M_{ms}]\) 0.35 g
- Compliance \([C_{ms}]\) 0.43 mm/N
- Effective diaphragm diameter \([D]\) 3 mm
- Effective piston area \([S_d]\) 7 cm²
- Equivalent volume \([V_{as}]\) 0.03 l
- Sensitivity (2.83V/1m) 90.5 dB
- Ratio \(B_l/V_{Re}\) 0.98 N/V/W
- Ratio \(f_s/Q_{ts}\) 608 Hz

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Datasheet updated: September 14, 2016.

Electrical Data
- Nominal impedance \([Z_n]\) 4 Ω
- Minimum impedance \([Z_{min}]\) 3.6 Ω
- Maximum impedance \([Z_o]\) 11.2 Ω
- DC resistance \([R_{e}]\) 0.4 kg/s
- Voice coil inductance \([L_e]\) 0.02 mH

Power Handling
- 100h RMS noise test (IEC 17.1)* 50 W
- Long-term max power (IEC 17.3)* 100 W
 *Filter: 2. order HP Butterworth, 2.5kHz

Voice Coil & Magnet Data
- Voice coil diameter 26 mm
- Voice coil height 2.1 mm
- Voice coil layers 2
- Height of gap 2.5 mm
- Linear excursion ± 0.2 mm
- Max mech. excursion ± 1.6 mm
- Unit weight 0.2 kg
Advanced Parameters (Preliminary)

Electrical data
- Resistance \([R_e']\) - Ω
- Free inductance \([L_{eb}]\) - mH
- Bound inductance \([L_e]\) - mH
- Semi-inductance \([K_e]\) - SH
- Shunt resistance \([R_{ss}]\) - Ω

Mechanical Data
- Force Factor \([B_l]\) - Tm
- Moving mass \([M_{ms}]\) - g
- Compliance \([C_{ms}]\) - mm/N
- Mechanical resistance \([R_{ms}]\) - kg/s
- Admittance \([A_{ms}]\) - mm/N