With the Ellipticor family a long tradition of circular motor structures and their inherent breakup behavior has been broken since one of its key features is an elliptical voice coil and magnet gap. In combination with the powerful SD AirCirc magnet system the D3404 has high sensitivity, very low distortion, and has an extremely fast response to transients. Above all a TRUE TO LIVE sound which makes D3404/552000 one of the very best tweeters on the market!

KEY FEATURES:
- Elliptic voice coil
- Low mechanical losses
- High sensitivity (SPL)
- Aircirc optimized magnetsystem
- Unusually low distortion
- Flexible optics with replaceable decor ring

T-S Parameters
- Resonance frequency \([f_s]\) 475 Hz
- Mechanical Q factor \([Q_{ms}]\) 5.25
- Electrical Q factor \([Q_{es}]\) 0.63
- Total Q factor \([Q_{ts}]\) 0.57
- Force factor \([B_l]\) 2.8 Tm
- Mechanical resistance \([R_{ms}]\) 0.32 kg/s
- Moving mass \([M_{ms}]\) 0.57 g
- Compliance \([C_{ms}]\) 0.20 mm/N
- Effective diaph. diameter \([D]\) ~38 mm
- Effective piston area \([S_d]\) 11.4 cm²
- Equivalent volume \([V_{as}]\) 0.04 l
- Sensitivity (2.83V/1m) 97 dB
- Ratio B/V/√Re 1.62 N/√W
- Ratio fs/Qts 833 Hz

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Datasheet updated: May 17, 2017

Electrical Data
- Nominal impedance \([Z_n]\) 4 Ω
- Minimum impedance \([Z_{min}]\) 4.0 Ω
- Maximum impedance \([Z_o]\) 30 Ω
- DC resistance \([R_e]\) 3 Ω
- Voice coil inductance \([L_e]\) 0.01 mH

Power Handling
- 100h RMS noise test (IEC 17.1) - W
- Long-term max power (IEC 17.3) - W

Voice Coils & Magnet Data
- Voice coil diameter 28/39 mm
- Voice coil height 2.5 mm
- Voice coil layers 2
- Height of gap 3 mm
- Linear excursion ± 0.25 mm
- Max mech. excursion ± 2 mm
- Unit weight 0.75 kg
Advanced Parameters (Preliminary)

Electrical data

- Resistance \([Re']\) - Ω
- Free inductance \([Leb]\) - mH
- Bound inductance \([Le]\) - mH
- Semi-inductance \([Ke]\) - SH
- Shunt resistance \([Rss]\) - Ω

Mechanical Data

- Force Factor \([Bl]\) - Tm
- Moving mass \([Mms]\) - g
- Compliance \([Cms]\) - mm/N
- Mechanical resistance \([Rms]\) - kg/s
- Admittance \([Ams]\) - mm/N