The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesses - it gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:
- Fast action due to low moving mass
- High SPL Output 92dB
- Internal Ferrite Magnet
- Wide Dispersion
- Vented / open rearside
- Internal grill to prevent dome from being pushed in

T-S Parameters
- Resonance frequency [fs]: 300 Hz
- Mechanical Q factor [Qms]: 7.75
- Electrical Q factor [Qes]: 2.22
- Total Q factor [Qts]: 1.73
- Force factor [Bl]: 4.7 Tm
- Mechanical resistance [Rms]: 0.80 kg/s
- Moving mass [Mms]: 3.3 g
- Suspension compliance [Cms]: 0.09 mm/N
- Effective diaph. diameter [D]: 84 mm
- Effective piston area [Sd]: 55 cm²
- Equivalent volume [Vas]: 0.36 l
- Sensitivity (2.83V/1m): 92 dB
- Ratio Bl/VRe: 1.97 N/V/W
- Ratio fs/Qts: 174 Hz

Electrical Data
- Nominal impedance [Zn]: 8 Ω
- Minimum impedance [Zmin]: 6.2 Ω
- Maximum impedance [Zo]: 25.6 Ω
- DC resistance [Re]: 5.7 Ω
- Voice coil inductance [Le]: 0.13 mH

Power Handling
- 100h RMS noise test (IEC 17.1)*: 80 W
- Long-term max power (IEC 17.3)*: - W
*Filter: 2. order HP Butterworth, 500 Hz

Voice Coil and Magnet Data
- Voice coil diameter: 76 mm
- Voice coil height: 2.9 mm
- Voice coil layers: 2
- Height of gap: 2 mm
- Linear excursion: ± 0.4 mm
- Max mech. excursion: ± 1.5 mm
- Unit weight: 0.6 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) - \(\Omega\)
- Free inductance \([L_{eb}]\) - \(\text{mH}\)
- Bound inductance \([L_e]\) - \(\text{mH}\)
- Semi-inductance \([K_e]\) - \(\text{SH}\)
- Shunt resistance \([R_{ss}]\) - \(\Omega\)

Mechanical Data
- Force Factor \([B_I]\) - \(\text{Tm}\)
- Moving mass \([M_{ms}]\) - \(\text{g}\)
- Compliance \([C_{ms}]\) - \(\text{mm/N}\)
- Mechanical resistance \([R_{ms}]\) - \(\text{kg/s}\)
- Admittance \([A_{ms}]\) - \(\text{mm/N}\)