The Discovery series offer traditional design, superior sound, a solid construction, and a wide range of variants. Combining these elements - plus a wealth of technical features and finesses - it gives our customers the possibility of acquiring a tailor-made Scan-Speak solution with very good performance at a reasonable low price point!

KEY FEATURES:

- Horn Loaded High Sensitivity Tweeter
- Low Damping Ferrofluid Cooling
- Coated Textile Diaphragm

T-S Parameters

- Resonance frequency \([f_s]\) 1030 Hz
- Mechanical Q factor \([Q_{ms}]\) 2.1
- Electrical Q factor \([Q_{es}]\) 1.2
- Total Q factor \([Q_{ts}]\) 0.7
- Force factor \([B_l]\) 3.3 Tm
- Mechanical resistance \([R_{ms}]\) 1.3 kg/s
- Moving mass \([M_{ms}]\) 0.4 g
- Compliance \([C_{ms}]\) - mm/N
- Effective diaph. diameter \([D]\) 26 mm
- Effective piston area \([S_d]\) 5.7 cm²
- Equivalent volume \([V_{as}]\) - l
- Sensitivity (2.83V/1m) 95.2 dB
- Ratio Bl/VRe 1.5 N/\sqrt{W}
- Ratio fs/Qts - Hz

Notes:

IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: January 21, 2016.

Electrical Data

- Nominal impedance \([Z_n]\) 6 Ω
- Minimum impedance \([Z_{min}]\) 5.0 Ω
- Maximum impedance \([Z_0]\) 14.2 Ω
- DC resistance \([R_e]\) 4.7 Ω
- Voice coil inductance \([L_e]\) 0.05 mH

Power Handling

- 100h RMS noise test (IEC 17.1)* 100 W
- Long-term max power (IEC 17.3)* 200 W

*Filter: 2. order HP Butterworth, 2.5 kHz

Voice Coil & Magnet Data

- Voice coil diameter 25 mm
- Voice coil height 1.6 mm
- Voice coil layers 2
- Height of gap 2 mm
- Linear excursion ± 0.2 mm
- Max mech. excursion ± 1.6 mm
- Unit weight 0.6 kg
TWEETER

H2606/920000

Advanced Parameters (Preliminary)

Electrical data
- Resistance \([R_e']\) - \(\Omega\)
- Free inductance \([L_{eb}]\) - \(\text{mH}\)
- Bound inductance \([L_e]\) - \(\text{mH}\)
- Semi-inductance \([K_e]\) - \(\text{SH}\)
- Shunt resistance \([R_{ss}]\) - \(\Omega\)

Mechanical Data
- Force Factor \([B_l]\) - \(\text{Tm}\)
- Moving mass \([M_{ms}]\) - \(\text{g}\)
- Compliance \([C_{ms}]\) - \(\text{mm/N}\)
- Mechanical resistance \([R_{ms}]\) - \(\text{kg/s}\)
- Admittance \([A_{ms}]\) - \(\text{mm/N}\)