TWEETER

R2004/602000

The compact size is one of the key elements of these Illuminator tweeters, which provides a high degree of flexibility within design options. The small size is employed without compromising sound quality where these compact tweeters are fully comparable to the renowned full size Illuminator and Revelator tweeters, no matter if the music is played at high or low listening levels.

KEY FEATURES:
- 3/4” Ring Dome Diaphragm
- Patented Symmetrical Drive (SD-2) motor
- Non Resonant Alu Rear Chamber
- Non Resonant Alu Rear Chamber
- Patented Phase Plug Design
- Sound Transparant Protective Grill
- Die Cast Housing & Face Plate

T-S Parameters
- Resonance frequency [fs] 675 Hz
- Mechanical Q factor [Qms] 3.01
- Electrical Q factor [Qes] 1.51
- Total Q factor [Qts] 1.01
- Force factor [Bl] 1.3 Tm
- Mechanical resistance [Rms] 0.3 kg/s
- Suspension compliance [Cms] 0.25 mm/N
- Effective diaph. diameter [D] 22 mm
- Effective piston area [Sd] 3.8 cm²
- Equivalent volume [Vas] 0.01 l
- Sensitivity (2.83V/1m) 86 dB
- Ratio Bl/√Re 0.78 N/√W
- Ratio fs/Qts 670 Hz

Notes:
All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: February 22, 2011.

Electrical Data
- Nominal impedance [Zn] 4 Ω
- Minimum impedance [Zmin] 4.5 Ω
- Maximum impedance [Zo] 8.4 Ω
- DC resistance [Re] 2.8 Ω
- Voice coil inductance [Le] 0.02 mH

Power Handling
- 100h RMS noise test (IEC 17.1)* 50 W
- Long-term max power (IEC 17.3)* - W
 *Filter: 2. order HP Butterworth, 3 kHz

Voice Coil and Magnet Data
- Voice coil diameter 19 mm
- Voice coil height 1.8 mm
- Voice coil layers 2
- Height of gap 2.5 mm
- Linear excursion ± 0.4 mm
- Max mech. excursion ± 1.6 mm
- Unit weight 0.1 kg
Advanced Parameters (Preliminary)

Electrical data:
- Resistance \([R_e']\) - \(\Omega\)
- Free inductance \([L_{eb}]\) - \(\text{mH}\)
- Bound inductance \([L_{e}]\) - \(\text{mH}\)
- Semi-inductance \([K_e]\) - \(\text{SH}\)
- Shunt resistance \([R_{ss}]\) - \(\Omega\)

Mechanical Data:
- Force Factor \([B_l]\) - \(\text{Tm}\)
- Moving mass \([M_{ms}]\) - \(\text{g}\)
- Compliance \([C_{ms}]\) - \(\text{mm/N}\)
- Mechanical resistance \([R_{ms}]\) - \(\text{kg/s}\)
- Admittance \([A_{ms}]\) - \(\text{mm/N}\)