TWEETER R3004/662001

The Illuminator tweeters stand for superb vocal rendition and excellent imaging at all listening locations. With its large roll surround and textile diaphragm provide a flat frequency response to above 30KHz. The unique AirCirc Magnet System, and its rear chamber, results in elimination of reflections and resonances that compromise the performance of traditional motors.

KEY FEATURES:
- 1" Ring Dome Diaphragm
- Patented Symmetrical Drive (SD-2) motor
- Diffraction Damping Rubber Front
- Patented Phase Plug Design
- AirCirc Motor Design w. 6 Neo magnets
- Die Cast Rubber Painted Alu Face Plate

T-S Parameters
- Resonance frequency [fs]: 520 Hz
- Mechanical Q factor [Qms]: 3.27
- Electrical Q factor [Qes]: 0.56
- Total Q factor [Qt]: 0.48
- Force factor [Bl]: 2.3 Tm
- Mechanical Resistance [Rms]: 0.30 kg/s
- Moving mass [Mms]: 0.3 g
- Suspension compliance [Cms]: 0.31 mm/N
- Effective diaph. diameter [D]: 27 mm
- Effective piston area [Sd]: 5.6 cm²
- Equivalent volume [Vas]: 0.01 l
- Sensitivity (2.83V/1m): 90.4 dB
- Ratio Bl/vRe: 1.33 N/VW
- Ratio fs/Qts: 1094 Hz

Electrical Data
- Nominal impedance [Zn]: 4 Ω
- Minimum impedance [Zmin]: 3.9 Ω
- Maximum impedance [Zo]: 20.6 Ω
- DC resistance [Re]: 3 Ω
- Voice coil inductance [Le]: 0.03 mH

Power Handling
- 100h RMS noise test (IEC 17.1)*: 90 W
- Long-term max power (IEC 17.3)*: 150 W
  *Filter: 2. order HP Butterworth, 2.5 kHz

Voice Coil and Magnet Data
- Voice coil diameter: 26 mm
- Voice coil height: 2.1 mm
- Voice coil layers: 2
- Height of gap: 2.5 mm
- Linear excursion: ± 0.2 mm
- Max mech. excursion: ± 1.6 mm
- Unit weight: 0.3 kg

Notes:
All Scan-Speak products are RoHS compliant.
Data are subject to change without notice.
Advanced Parameters (Preliminary)

**Electrical data:**
- Resistance \([R_e']\) - \(\Omega\)
- Free inductance \([L_{eb}]\) - \(\text{mH}\)
- Bound inductance \([L_e]\) - \(\text{mH}\)
- Semi-inductance \([K_e]\) - \(\text{SH}\)
- Shunt resistance \([R_{ss}]\) - \(\Omega\)

**Mechanical Data**
- Force Factor \([B_l]\) - \(\text{Tm}\)
- Moving mass [Mms] - \(\text{g}\)
- Compliance [Cms] - \(\text{mm/N}\)
- Mechanical resistance [Rms] - \(\text{kg/s}\)
- Admittance [Ams] - \(\text{mm/N}\)