Frequency response from 3,000 up to 40,000 Hz ± 1 dB. The impedance curve shows the resonance well damped.

The acoustically measured phase indicates no jumps. The harmonic distortions are very low figures.

Level had to be raised by 40 dB (!)

Compliance:
- suspension: C_{rms}
- acoustic: C_{as}
- equivalent volume: V_{as}

Cone:
- eff. cone area: S_p cm²
- moving mass: m_{rms} g
- lin. volume displacement: V_d cm³
- mech. resistance: R_{rms}
- lin. excursion: $P-P$, X_{max} mm
- max. excursion: $P-P$, 2 mm

*Frequency response: 1500-45000 Hz
*Harmonic distortion: < 0.2%
*Intermodulation distortion: < 0.2%
*Magnetism:
- total gap flux: 280 μWb
- flux density: 1.75 Tesla
- gap energy: 125 mWs
- force factor: $B_x L_s$ Tm
- air gap volume: V_g, 0.11 cm³
- air gap height: 2.5 mm
- air gap width: 0.65 mm

Net weight: 0.55 kg
*Thiele/Small parameters are measured not statically but dynamically.

All specifications subject to change without notice.

The advantages of the aperiodic damping are consequently applied to all DYNAUDIO dome constructions and may be achieved to all cabinet enclosures by using the VARIOVENT. Aperiodic damping may be compared with a shock absorber in a motor car. Physically the aperiodic damping acts like a DC-resistance in the oscillating circuit.