WOOFER
 L11RCY/P

L11RCY/P is a $4.5^{\prime \prime}$ High Fidelity mini woofer with a stiff and stable injection moulded metal chassis. The stiff, yet light aluminium cone and the low loss rubber surround show no sign of the familiar $500-1500 \mathrm{~Hz}$ cone edge resonance and distortion associated with soft cones. On the other hand, the cone break up modes at higher frequencies call for special attention in the crossover design work. The high temperature voice coil wound on an aluminium voice coil former gives high power handling capacity. A bullet shaped phase plug reduces compression due to temperature variations in the voice coil, avoids resonance problems which would occur in the volume between the dust cap and the pole piece and increases the long term power handling capacity. An extra large magnet provides high efficiency and low Q . The unit may be used in very small two-way ported systems producing an astonishingly deep bass and a clean, neutral midrange.

NOTES

\qquad
\qquad

NOMINAL IMPEDANCE

RECOMMENDED FREQUENCY RANGE SHORT TERM MAXIMUM POWER * LONG TERM MAXIMUM POWER* CHARACTERISTIC SENSITIVITY (1W , 1m) OPERATING POWER (96 dB SPL, 1 m)

VOICE COIL DIAMETER
voice coil height
AIR GAP HEIGHT
Linear coil travel (p-p)
MAXIMUM COIL TRAVEL (p -p) maGNETIC GAP FLUX DENSITY
MAGNET WEIGHT
total weight

8	Ohms
$55-3500$	Hz
200	w
70	w
86	dB SPL
10	W
26	mm
12	mm
6.0	mm
6.0	mm
9	mm
1.25	T
0.42	Kg
1.21	Kg

VOICE COIL RESIISTANCE	5.5	Ohms
VOICE COIL INDUCTANCE (EQUIVALENT)	0.65	mH
FORCE FACTOR	7.0	$\mathrm{~N} / \mathrm{A}$
FREE AIR RESONANCE	53	Hz
MOVING MASS	6.8	g
AIR LOAD MASS IN IEC BAFFLE	0.2	g
SUSPENSION COMPLIANCE	1.3	$\mathrm{~mm} / \mathrm{N}$
SUSPENSION MECHANICAL RESISTANCE	1.4	Ns / m
EFFECTIVE PISTON AREA	50	$\mathrm{sq.cm}$
VAS	4.6	Litres
QMS	1.70	
QES	0.26	
QTS	0.23	
$\mathbf{2 6 8 - 5}$		

